Humanoid Motion Planning for Dual-Arm Manipulation and
Re-Grasping Tasks

Nikolaus Vahrenkamp* Dmitry Berenson'

*Institute for Anthropomatics
University of Karlsruhe
Haid-und-Neu Str. 7
76131 Karlsruhe, Germany
{vahrenkamp,asfour,dillmann } @ira.uka.de

Abstract—1In this paper, we present efficient solutions for
planning motions of dual-arm manipulation and re-grasping
tasks. Motion planning for such tasks on humanoid robots with
a high number of degrees of freedom (DoF) requires computa-
tionally efficient approaches to determine the robot’s full joint
configuration at a given grasping position, i.e. solving the Inverse
Kinematics (IK) problem for one or both hands of the robot.
In this context, we investigate solving the inverse Kkinematics
problem and motion planning for dual-arm manipulation and re-
grasping tasks by combining a gradient-descent approach in the
robot’s pre-computed reachability space with random sampling
of free parameters. This strategy provides feasible IK solutions
at a low computation cost without resorting to iterative methods
that are often trapped by joint-limits. We apply this strategy to
dual-arm motion planning tasks in which the robot is holding
an object with the one hand in order to generate whole-body
robot configurations suitable for grasping the object with both
hands. In addition, we present two probabilistically complete
RRT-based motion planning algorithms (J*-RRT and IK-RRT)
that interleave the search for an IK solution with the search for
a collision-free trajectory and the extension of these planners
to solve re-grasping problems. The capability of combining IK
methods and planners are shown both in simulation and on the
humanoid robot ARMAR-III performing dual-arm tasks in a
kitchen environment.

I. INTRODUCTION

When performing everyday manipulation tasks, such as
putting plates in a cabinet or loading a dishwasher, humans
often re-grasp the objects they manipulate. Having two arms
allows people to reach for an object with one arm and place
it with the other, effectively increasing the reachable space
without moving in the workspace. If humanoid robots are
to exploit their two-armed capabilities, they must possess
computationally efficient algorithms for grasping, re-grasping
and dual-arm tasks.

Because such robots are meant to operate in cluttered
domestic environments, planning algorithms are needed to
generate collision-free trajectories. However, planning a reach-
ing or a re-grasping motion requires choosing a feasible grasp
pose from multiple grasp poses defined by a given object
and finding a configuration of the robot’s joints which places
the robot’s end-effectors to the selected grasp pose. Thus,
the planning algorithm must decide which of the feasible
grasp poses should be selected and determine the robot’s joint
configuration for that pose. In the case of re-grasping, the

Tamim Asfour*

James Kuffner' *

Riidiger Dillmann
TThe Robotics Institute
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213
{dberenso,kuffner} @cs.cmu.edu

object position which allows grasping by the second hand must
be calculated.

Finding a robot configuration that places the end-effector
at a given pose is known as the Inverse Kinematics (IK)
problem. Though analytical solution of IK is possible for
some manipulators which have no more than 6 DoF[1], the
humanoid robot ARMAR-III robot [2] has two 7 DoF arms
and a 3 DoF hip.

In this paper, we present a novel IK solver for ARMAR-III,
which uses a combination of gradient descent in pre-computed
reachability spaces and random-sampling of free parameters
(Sec. II and III) and show how to apply our approach to one
or two arm queries with fixed or varying object poses. In the
case of a varying object pose, the search for a collision-free
and graspable object pose is part of the inverse kinematics
task and the result consists of a robot configuartion and a
6D object pose. This approach to solving IK is extremely
efficient, requiring only a few milliseconds to solve a query
as opposed to more time-consuming iterative IK algorithms
(e.g. [3]) which are often trapped by joint limits.

This paper also presents two probabilistically complete
algorithms for planning reaching and re-grasping motions
(Section IV): the J*-RRT, which is an extension of the single-
tree RRT-JT approach[4] and IK-RRT, which is a bidirectional
RRT that samples IK solutions while planning. The advantage
of the JT-RRT is that it does not require an IK solver, so
it can be used for robots where no efficient IK solver is
available, however it usually takes a long time to find a path
in cluttered environments. The advantage of the IK-RRT is
its low computation cost, however, it requires an efficient IK
solver such as the one presented in this paper. In section V we
present how both planners are extended to generate collision-
free trajectories for dual-arm re-grasping tasks. Simulation and
experimental results on the humanoid robot ARMAR-III are
shown in section VI

II. SINGLE ARM IK SOLVER

To reach and grasp a fixed object with one hand, the
IK-problem has to be solved. In the case of ARMAR-III,
the operational workspace can be increased by additionally
considering the three hip joints of the robot, which leads to a
kinematic chain with ten DoF. Our approach to solving the IK

problem uses a combination of gradient descent in reachability
space and random sampling of free parameters.

A. Randomized IK-Solver

Typically, an arm of a humanoid robot consists of six to
eight DoF and is part of a more complex kinematic structure.
If an analytical method exists for solving the IK problem for
6DoF of an arm, a randomized algorithm can be constructed
which randomly samples the preceding joints (such as the hip)
and uses the analytical IK-solver for determining the final
arm configuration. This probabilistic approach increases the
operational workspace of the robot arm and is suitable for
randomized planning algorithms.

For ARMAR-III we use a specialized analytic approach
for solving the 7 DoF IK problem for one arm where all
possible elbow positions are computed and, depending on
the parameterization, the best one is chosen [S5]. If there
are multiple solutions, the behavior can be adjusted. Either
the one with the lowest accumulated joint movement or a
random solution out of the set of possible results is selected. In
addition to this IK solving it is desirable to consider the joints
of the robot’s hip since the reachable workspace increases
significantly when using additional degrees of freedom. In this
case the three hip joints of ARMAR-III are randomly sampled
until an IK query is successfully answered.

If a configuration was found which brings the end effector to
the desired pose, the IK solution has to be checked against self-
collisions and collisions with obstacles in order to avoid invalid
configurations. If the collision checker reports collisions, the
solution is rejected and the search is continued.

The approach is probabilistically complete, which means if
time goes to infinity the algorithm will find a solution if at
least one exists. To avoid endless runtimes, the search for an
IK solution is stopped after a specific number of tries and it
is assumed that there is no valid result. Since this IK-solver is
used within a probabilistic planning algorithm, this approach
fits well in the planning concept.

B. Reachability Space

The use of a reachability space can speed up the randomized
IK solver. The reachability space represents the voxelized 6D-
Pose space where each voxel holds information about the
probability that an IK query can be answered successfully [6,
7, 8]. It can be used to quickly decide if a target pose is too
far away from the reachable configurations and therefor if a
(costly) IK solver call makes sense.

The reachability spaces can be determined by solving a
large number of IK requests and counting the number of
successful queries for each voxel. Another way of generating
the reachability space is to randomly sample the joint values
while using the forward kinemtics to determine the pose of
the end effector and thus the corresponding 6D voxel [6].
An analytic approach of generating a representation of the
reachability is presented in [9].

Since the reachability space is linked to the shoulder, it
moves when setting the three hip joints randomly in the

(@) (b)

Fig. 1. (a) An object (wok) with predefined grasp positions for the right
hand of ARMAR-IIL. (b) The 3D projection of the reachability spaces for
both arms of ARMAR-IIL

search loop of the probabilistic IK-solver. For this reason,
the target pose Py, which is given in the global coordinate
system, is transformed to the shoulder coordinate system and
the corresponding voxel of the resulting pose Py, is determined.
The analytical IK solver is only called if the entry of this voxel
is greater than zero (or a given threshold).

C. Gradient Descent in Reachability Space

For further speedup we propose a gradient descent approach
which can be used to optimize the search for a graspable object
pose. If an object pose was found, where the corresponding
reachability space entry lies above a threshold, we apply a
search for a local maximum. This is done by checking the
neighbor voxels of the reachability space. If there is a voxel
with a higher reachability space entry and the new pose is
collision free, the object 6D position is moved toward this
voxel by the extend of the corresponding dimensions of a
voxel. The new position then lies inside the voxel with the
higher reachability entry. This is repeated until there are no
neighbors with higher entries which means the position is at
a local maximum of the discretized reachability distribution.

To avoid loosing the probabilistic completeness by applying
the discretized reachability space and the gradient descent
approach, these extensions to the original algorithm are only
used with some probability during the search loop. Thus, the
theoretical behavior of the IK solvers remain untouched while
the performance can be considerably increased.

D. 10 DoF IKSolver for Armar-III.

The most convenient kinematic chain for reaching or grasp-
ing an object with ARMAR-III consists of the three hip joints
followed by seven arm joints. This 10 DoF kinematic chain
leads to a large reachable workspace and thus enables the
robot to perform grasping and manipulation operations without
moving the robot’s mobile platform.

To measure the performance of the 10 DoF IK-solver, the
wok with 15 associated grasping poses is set to a random
pose in front of the robot. Then the IK solvers with and
without reachability space are called in order to find a valid
configuration for bringing the end effector to one of the 15
grasping poses. An exemplary result of the IK-solver in a

(b)

Fig. 2. (a) A 2D view of the reachability space of ARMAR-IIIL. (b) The
2D projection of a gradient descent optimization. The color intensity is
proportional to the probability that a pose inside the voxel is reachable.

partly blocked scene is shown in Fig. 3(a). The results of
table 1 are determined by building the averages of 100 IK
queries with different object poses '. The average runtime
and the number of calls of the analytical 7 DoF IK solver
are given for setups with/without reachability space and in
scenes with/without obstacles. It turns out that the use of the
reachability space speeds up the IK-solver enormously and it
allows the use of these approaches in real world applications.

TABLE 1
PERFORMANCE OF THE 10 DOF IK SOLVERS.

Without Obstacle With Obstacle
Avg #IK Avg #IK
Runtime calls Runtime calls
Without Reach. Space | 1404 ms | 101.9 | 2 880 ms | 217.3
With Reach. Space 60 ms 6.1 144 ms 13.6

(a) Single arm IK solver in a scene with (b) Dual-Arm IK-solver in an
an obstacle. empty scene.

Fig. 3. Exemplary results of the 10 DoF single arm (a) and the 17 DoF dual-
arm IK solvers (b). The IK algorithms provide feasible joint configurations
and a collision-free object pose.

III. DUAL-ARM IK-SOLVER

If the robot should re-grasp or hand-off an object, the search
for a valid re-grasping configuration includes a collision free
object pose and a valid and collision free IK-solution for

IThese performance evaluations have been carried out on a DualCore
system with 2.0 GHz.

both arms. This leads to a 23 DoF IK problem, where the
combination of the 6D object pose, three hip joints and 7
DoF for each arm results in a 23 dimensional solution vector.

A. Random Sampling

To find a reachable object pose in the workspace of the
robot, the 6D pose of the object and the configuration of the
three hip joints can be sampled randomly until a call of the
IK solver is successfull for one of the poses P;. Therefore the
Cartesian position of the object is limited to the extend of the
reachable workspace and the orientational part does not have
any restrictions.

B. Reachability Space

Since the computational costs of IK solver calls could
be high, the search for feasible object poses can be speed
up by the use of reachability spaces. During the IK search
loop, the analytical 7-DoF IK solvers are only called, if
the IK-probability of at least one left and at least one right
grasping pose in the corresponding reachability space is above
a threshold. If the IK-probability is below that threshold,
the random generated hip configuration and object pose is
discarded and a new sample is generated. If the IK-probability
is high enough it is likely that the costly IK-Solver calls will
succeed and that the pose is valid.

TABLE 2
PERFORMANCE OF THE DUAL-ARM IK SOLVERS.

Without Obstacle With Obstacle
Avg #IK Avg #IK
Runtime | calls | Runtime | calls

Flexible grasp selction 47 ms 3.3 161 ms 6.5
Object grasped with left hand 162 ms 3.2 220 ms 4.3

The resulting run times of the the dual-arm IK-solvers are
shown in table 2. The IK-solver returns a valid object position
and the corresponding joint configuration for the hip and both
arms. In this configuration the object and the robot are in a
collision free state and a grasp can be applied for the left and
the right hand (row 1). The second row shows the performance
of the IK solver when the object is already grasped with one
hand.A n exemplary result of the dual-arm IK-solver is shown
in Fig. 3(b).

IV. MOTION PLANNING FOR SINGLE ARM REACHING

The proposed planning algorithms combine the search for
collision free motions with the search for solutions of the IK
problem in one planning scheme. The planners are initialized
with a set of grasping poses which are used to calculate
feasible target configurations. The computation of feasible
target configurations is done during the planning process and
thus the planning is not limited to an incomplete set of targets.

A. Predefined Grasps

If an object should be grasped with an end-effector of the
robot, a collision-free trajectory has to be planned in order
to bring the hand to a grasping pose Pgy.qsp which allows

applying a feasible grasp. This grasping pose is defined with
respect to the pose of the target object and could be derived
by applying the grasp-specific transformation 7j. For each
object which should be grasped or manipulated by the robot,
a set of feasible grasps is stored in a database. This set hold
information about the transformations between the end effector
and the final grasping position, the type of grasp, a pre-position
of the end-effector and additional grasp quality descriptions.
These database entries can be generated automatically (as
in [10] or [11]) or manually, like in the following examples. A
wok with 15 feasible grasps for the right hand of the humanoid
robot ARMAR-III can be seen in Fig. 1(a).

To grasp an object o (located at position 7,) with the end-
effector e by applying the grasp gi from the feasible grasps
set gcg, the IK problem for the pose P has to be solved.

P =T;'*T, (1)

It is possible to calculate an IK solution for each pose of
each grasp candidate in the database and to use this set of
configurations as targets for the planning process. This will
lead to a planning scheme where the search for solutions is
limited to the pre-calculated IK solutions. Since, in general,
there are infinite numbers of solutions for the IK problem, the
planner could fail although there is a valid motion for an IK
solution which was not considered. Furthermore, it can be time
consuming to calculate the IK solutions for every grasping
pose in advance. If the feasible grasps are densely sampled, the
pre-calculation has to be done for a large number of workspace
poses. These problems can be avoided, if the search for valid
IK solutions is included in the planning process.

The following two sections present two algorithms that
determine an IK solution while planning. Both of these algo-
rithms take as input the grasp set for the object and output
a joint-space trajectory to reach the object. Note that we
have developed similar planning algorithms that take as input
continuous regions in the workspace in previous work [12].

B. Jacobian Pseudoinverse-Based RRT (JT-RRT)

The RRT-JT approach, presented in [4], avoids the explicit
search for IK solutions by directing the RRT extensions
towards a workspace goal pose. Therefore the transposed
Jacobian is used to generate C-Space steps out of a workspace
goal direction. The RRT-JT approach can be useful when no
IK solver for a robot system is present and only a grasping
pose in workspace is known. Since there is no explicit C-
space target configuration defined, the approach can not be
implemented as a bi-directional RRT and the advantages of
the Bi-RRT algorithms can not be applied.

The JT-RRT is an extension of the RRT-JT approach:

« Instead of the transposed Jacobian, the Pseudoinverse is
used to compute goal directed C-space extension steps.

o Multiple workspace goals are defined through a set of
feasible grasps.

o Instead of a three dimensional positions, full 6D poses
are used as workspace targets.

Algorithm 1: J+'RRT(QSta’rtvpobjagc)

1 RRT.AddConfiguration(qstart);

2 while (/TimeOut()) do

3 ExtendRandomly(RRT);

4 if (Tand() < pEmtendToGoal) then

5 Solution «— ExtendToGoal(RRT, poy;, gc);
6 if (Solution # NULL) then

7 return PrunePath(Solution);
8

9

end
end

Algorithm 2: ExtendToGoal(RRT, pey;, gc)

1 grasp < GetRandomGrasp(gc);

2 Prarget — ComputeTargetPose(grasp);

3 Qnear — GetNearestNeighbor(RRT, prarget):

4 repeat

5 Dnear — ForwardKinematics(qnear);

6 Ap < Ptarget — Pnear;

7 Ay — J " (Gnear) * LimitCartesianStepSize(A,);
8 Qnear < Qnear + Aq;

9 if (Collision(qnear) || !InJointLimits(qneqr)) then
10 return NULL;

11 RRT.AddCon figuration(gqnear);

12 until (Length(A,) > Thresholdcqrtesean)

13 return BuildSolutionPath(gqnear);

The pseudo code of the JT-RRT planner is given in
algorithm 1. The planner is initialized with the starting con-
figuration gs¢qr¢, the workspace pose pop; of the object and a
set of feasible grasps (gc = {go, ., g% })- The RRT algorithm
is used to build up a tree of reachable and collision-free
configurations. When a new configuration is added to the tree,
the corresponding workspace pose of the hand is stored with
the configuration data. The ExtendToGoal method is called
with some probability at each iteration of the planner.

In Fig. 4(a) a resulting RRT of a J¥-RRT planner in an
empty scene is depicted. The resulting grasping trajectory
and it’s optimized version are shown in blue and green. The
optimized version was generated by standard path pruning
techniques [13]. The red parts of the search tree have been
generated by the ExtendToGoal part of the approach, where
the Pseudoinverse Jacobian is used to bias the extension to a
grasping pose (see Alg. 2). The figure shows that the search is
focused around the grasping object but in most cases the joint
limits and collisions between the hand and the object (wok)
prevent the generation of a valid solution trajectory.

C. IK-RRT

To speedup the planning, an IK solver could be used in
order to generate goal positions during the planning process.
The planner uses as input a set of feasible grasping poses,
which, combined with the pose of the object, defines a set of
workspace target poses. These poses are used as input for the

IK solver.

Algorithm 3: IK-RRT(qs¢art.Pob;»gC)

1 RRT1.AddCon figuration(qstart);

2 RRT2.Clear();

3 while (/TimeOut()) do

4 if (#1K Solutions == 0 || rand() < prx) then
5 grasp — Get RandomGrasp(gc);

6 Drarget < ComputeTarget Pose(poy;, grasp);
7 qIK < ComPUtEIK(ptarget);
8
9

if (\Collision(qrx)) then
RRT2.AddCon figuration(qrk);

10 else

1 qr — GetRandomCon figuration();

12 if (RRT1.Connect(q,) & RRT2.Connect.(q,))
then

13 Solution «— BuildSolutionPath(q,);

14 return PrunePath(Solution);

15 end

16 end

17 end

The IK-RRT algorithm works as follows:

« Initialization: The forward part of the Bi-RRT algorithm
is initialized with a start configuration, the backward tree
is empty until an IK solution is found.

e The planning loop grows the two trees and tries to
connect them via an intermediate configuration.

o With some probability, a random grasp out of the set of
feasible grasps is chosen and a call to the randomized
IK solver is perfomed. When a feasible IK configuration
qrx 1s found, it is added to the backward tree and the
new node is marked as a solution node.

Since the IK search is probabilistic complete for the set
of grasps and the RRT-Connect algorithm is known to be
probabilistic complete [14], the IK-RRT approach is proba-
bilistic complete. This means, that as time goes to infinity the
algorithm will find a solution if at least one exists.

(b) A scene with an obstacle (IK-
RRT).

(a) An empty scene (J1-RRT).

Fig. 4. The results of the J* and the IK-RRT planner. The solution is
marked blue, the optimized solution is shown in green.

In Fig. 4(b) results of the IK-RRT approach are shown. The
original and the optimized solution path are depicted in blue

and green. Due to the bi-directional approach of the IK-RRT
algorithm the search tree is much smaller compared to the
results of the JT-RRT approach (Fig. 4(a)).

V. MOTION PLANNING FOR DUAL-ARM RE-GRASPING

To plan a re-grasping motion with two arms, two problems
have to be solved. The configuration for handing off the object
from one hand to the other hand must be determined. This
configuration must bring the object, which is grasped with
one hand, to a position where the other hand can apply a
feasible grasp. This search also includes choosing which grasp
should be applied with the second hand. The configuration
is only valid if there are no collisions between the arms, the
environment, the object and the robot. Furthermore there must
exist a collision-free trajectory which brings the arm with the
grasped object and the other arm to the re-grasping position.

A. Dual-Arm JT-RRT

The dual-arm JT-RRT is an extension of the J1-RRT
approach presented in section I'V-B.

Instead of defining the target by a fixed workspace pose
and a set of grasps, the object is attached to a hand and
thus the target is implicitly definied by the set of grasps.
These grasping poses lead to a set of transformations between
the both hands, defining all dual-arm configurations for re-
grasping. The ExtendToGoal part of the JT-RRT approach
(see Alg. 1) has to be adapted for the dual-arm algorithm.
Instead of moving one arm towards a fixed goal pose, the
two end-effectors are moved towards each other in order to
produce a configuration where the object can be grasped with
both hands. The DualArmExtendToGoal part selects a random
grasp and the configuration with the smallest distance between
the two end-effector poses and tries to move both arms towards
a re-grasping pose. This is done by alternately moving the
arms towards the corresponding goal poses in workspace. Thus
the Pseudoinverse Jacobians are calculated for every step and
sample configurations are generated. These samples are tested
for collision and violations of joint limits and added to the
RRT. If a re-grasping pose can be reached a solution to the
planning problem was found, otherwise the chosen RRT nodes
are excluded form further goal extension steps.

Algorithm 4: Dual ArmExtendToGoal(RRT, gc)

1 grasp «— GetRandomGrasp(gc);

2 n «— GetNodeMinDistanceTCPs(RRT);
3 while (Timeout()) do

4 n «— MoveLeftArm(n, grasp);

5 if (In) then

6 return NULL;

7 n «— MoveRight Arm(n, grasp);

8

9

if (In) then
return NULL;
10 if (HandO f f Pose Reached(n, grasp)) then
1 return BuildSolutionPath(n);
12 end

Algorithm 5: MoveLeftArm(n, grasp)

1 preft < TCPLeft(n);

2 p;eft — TargetPoseLe ft(n, grasp);

3 AP — p;eft — Dleft;

4 Ay — J(qest) * LimitCartesianStepSize(Ay);
5 Qleft — Qeft T Dgs

6 if (Collision(giest) || 'InJointLimits(qies:)) then
7 return NULL;

8 return BuildNewCon figurationLe ft(n, qiest);

B. Dual-Arm IK-RRT

With the IK-solver methods presented in section II it is
possible to generate feasible configurations for dual-arm re-
grasping tasks. The search for these configurations can be
included in a RRT-based planner as described in section I'V-C.
The dual-arm IK-solver is used to generate IK solutions during
the planning process. These IK solutions include a valid pose
of the object with the corresponding joint configuration of the
hip and both arms for grasping the object with both hands. The
algorithm 3 has to be adapted slightly to include the dual-arm
IK solver. Instead of a predefined object pose, the object is
attached to the kinematic structure of one arm and thus the IK-
solver just operates on the set of feasible grasps. The resulting
dual-arm IK-RRT planner can be used for building collision
free re-grasping trajectories in cluttered environments.

(a) The

re-grasping motion is
planned with the dual-arm J+-RRT.
The red parts are generated by the
ExtendToGoal part of the algorithm.

(b) Dual-arm IK-RRT: The wok is
grasped with the left hand and the
collision free solution trajectory re-
sults in a re-grasping configuration.

Fig. 5. The results of the dual-arm JT and the dual-arm IK-RRT planner.
The solution is marked blue, the optimized solution is shown in green.

VI. RESULTS

A. Single Arm Reaching

In table 3 the performance of the J*-RRT and the IK-RRT
planners is compared. The average values of 100 test runs are
shown and reveal that the usability of the J*-RRT is limited
in cluttered scenes because of the long run times. The IK-RRT
algorithm is faster and due to the fast IK solver the planning
times are suitable for the use in real world scenarios.

TABLE 3

PERFORMANCE OF THE SINGLE ARM APPROACHES.
Without Obstacle | With Obstacle
Avg Runtime Avg Runtime

2 032 ms 18 390 ms
140 ms 480 ms

JT-RRT
IK-RRT

B. Dual-Arm Re-Grasping

The result of the dual-arm re-grasp planners are shown in
table 4. Again, the IK-RRT planner is much faster than the
JT approach.

TABLE 4

PERFORMANCE OF THE DUAL-ARM RE-GRASPING PLANNERS.
Without Obstacle | With Obstacle
Avg Runtime Avg Runtime

1 662 ms 5192 ms
278 ms 469 ms

JT-RRT
IK-RRT

C. Dual-Arm Motion Planning in a Kitchen Scenario

To evaluate the performance and capabilities of the devel-
oped algorithms in real world scenarios, a manipulation task
in a kitchen environment is studied. A wok should be grasped
with the right hand of the robot, a re-grasping motion has
to be planned and finally the object has to be placed in a
cabinet. The planning framework should be able to generate
collision-free joint trajectories in reasonable time. For this
example, the task of solving the IK problem and the collision-
free motion planning are considered separately. This leads to
a planner which looses the ability of being probabilistically
complete, since the planning is limited to one set of IK
solutions and if this IK solution is not reachable the planning
will fail. The experiments showed, that the situation, where
an IK solution is not reachable by a collision free motion,
was never observed and thus this theoretical disadvantage
does not affect the applicability of this manipulation planning
approach. Theoretically it is possible to build a planner which
is probabilistically complete. This can be done for this kind
of manipulation planning problem, by searching IK solutions
in parallel and for every solution an instance of the planning
algorithm is started. If time goes to infinity, all possible 1K
solutions will be discovered and if a valid solution exists the
planner will find it.

F

Fig. 6. The results of the three planning tasks. In the left image the wok is
grasped with the right hand, then the re-grasping procedure is executed and
finally the object is placed in the cabinet.

TABLE 5
PERFORMANCE OF THE KITCHEN EXPERIMENT.

IK Motion

Solving Planning

Grasp 19.6 ms 345 ms
Re-Grasping | 760.7 ms | 4 702 ms
Place | 22.6 ms 1 263 ms
Complete | 802.9 ms | 6 310 ms

D. Hand-off with Two Robots

The proposed algorithms can be used to generate collision
free re-grasping motions for two robots. Instead of considering
two arms of one robot, two arms of two different robot systems
can be used as input for the planning algorithms. A result
of such a re-grasping motion can be seen in Fig. 7. The
performance of the two arm hand-off planning algorithms
is similar to the one robot case of section VI-B. From the
algorithmic point of view the only difference between the one
robot and the two robot problem are the additional hip joints
of the second robot.

Fig. 7. A hand-off configuration for two robots.

E. Experiment on ARMAR-III

In this experiment ARMAR-III is operating in a kitchen
environment where the partly opened cabinet and a box are
limiting the operational workspace of the robot. A planner for
dual-arm re-grasping (see section V) is used to find a hand-off
configuration and to plan a collision free hand-off motion for
both arms. The resulting trajectory moves both hands and the
plate that is already grasped with the right hand, to the hand-
off position and after re-grasping the arms are moved to a
standard pose. Real world experiments show how the dual-arm
re-grasping planners enable the humanoid robot ARMAR-III
to hand-off objects from one hand to the other.

VII. CONCLUSION

We presented and compared two main strategies for motion
planning of reaching and re-grasp motions including single
and dual arm tasks. The search for a suitable and collision free
configuration for grasping or re-grasping an object is included
in the planning algorithms and thus the planners cover the
search for suitable target configurations implicitly. The J+

Fig. 8. The humanoid robot ARMAR-III is re-grasping a plate in the kitchen.

apporach, which doesn’t need an IK solver implementation, is
compared with the IK-RRT approach, which benefits from the
possibility of planning bi-directional. Several planning setups
are investigated and the performance of the different algo-
rithms is evaluated in simulations and real world experiments.

The presented planners can be used to efficiently plan
reaching and re-grasping tasks without defining explicit target
configurations. This leads to planning algorithms which can
be applied in humanoid robots and which can be addressed
and parameterized easily, e.g. for a higher level task planning.

The algorithms are also applied for a multi robot planning
task and the execution on the real robot ARMAR-III shows
the practical usability of the presented work.

VIII. ACKNOWLEDGEMENTS

The work described in this paper was partially conducted
within the German Humanoid Research project SFB588
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft) and the EU Cognitive Systems
projects GRASP (FP7-215821). We also thank the InterACT
program [15] for making this joint research project possible.

REFERENCES

[11 1. J. Craig, Introduction to Robotics.
1989.

[2] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “Armar-III: An integrated humanoid
platform for sensory-motor control.” in /[EEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2006), December 2006, pp.
169-175.

[3] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipu-
lators, 2nd ed. Springer, 2000, pp. 96-100.

[4] M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path planning
for redundant manipulators without inverse kinematics,” in IEEE-RAS
International Conference on Humanoid Robots, November 2007.

[5] T. Asfour and R. Dillmann, “Human-like motion of a humanoid robot
arm based on a closed-form solution of the inverse kinematics problem.”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2003.

[6] N. I. Badler, C. B. Phillips, and B. L. Webber, Simulating Humans:
Computer Graphics Animation and Control. New York, Oxford: Oxford
University Press, 1993.

[7]1 L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami, “Efficient pri-
oritized inverse kinematic solutions for redundant manipulators,” Aug.
2005, pp. 3921-3926.

[8] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:
Science and Systems, June 2008.

[9] D. Kee and W. Karwowski, “Analytically derived three-dimensional

reach volumes based on multijoint movements,” Human Factors: The

Journal of the Human Factors and Ergonomics Society, vol. 44, pp.

530-544(15), 2002.

A. T. Miller, “Grasplt!: a versatile simulator for robotic grasping.” Ph.D.

dissertation, Department of Computer Science, Columbia University,

2001.

Reading, MA: Addison-Wesley,

(10]

[11]

[12]

[13]

[14]

[15]

D. Berenson and S. Srinivasa, “Grasp synthesis in cluttered environ-
ments for dexterous hands,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids08), 2008.

D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
“Manipulation planning with workspace goal regions,” in IEEE Int’l
Conf. on Robotics and Automation (ICRA’2009),Kobe,Japan, 2009.

R. Geraerts and M. H. Overmars, “On improving the clearance for robots
in high-dimensional configuration spaces,” in IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems, 2005, pp. 4074—4079.

J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in /EEE Int’l Conf. on Robotics and
Automation (ICRA’2000), San Francisco, CA, 2000, pp. 995-1001.
InterAct, “http://isl.ira.uka.de/.”

