Simox
2.3.74.0
|
An interface class for custom sample algorithms. More...
Public Member Functions | |
Sampler (unsigned int dimension) | |
virtual | ~Sampler () |
virtual void | sample (Eigen::VectorXf &stroreConfig, CSpacePtr space)=0 |
virtual void | enableMetricWeights (const Eigen::VectorXf &weights) |
virtual void | disableMetricWeights () |
Protected Member Functions | |
void | getUniformlyRandomConfig (Eigen::VectorXf &stroreConfig, CSpacePtr space) |
Returns a uniformly generated random configuration with nDimension components. More... | |
void | getNormalRandomConfig (Eigen::VectorXf &stroreConfig, const Eigen::VectorXf &mean, const Eigen::MatrixXf &variance) |
void | getNormalRandomConfig (Eigen::VectorXf &stroreConfig, const Eigen::VectorXf &mean, float variance) |
Protected Attributes | |
unsigned int | dimension |
Eigen::VectorXf | metricWeights |
An interface class for custom sample algorithms.
Saba::Sampler::Sampler | ( | unsigned int | dimension | ) |
|
virtualdefault |
|
virtual |
|
virtual |
Enable metric weighting. This can be useful for different variance in each dimension. Standard: disabled
|
protected |
Returns a normal distributed random configuration with nDimension components. Note that we assume the covariance-matrix to be a diagonal matrix. This means, that the components of the configuration are uncorrelated. The result value is not checked against any boundaries of the configuration space.
|
protected |
Returns a normal distributed random configuration with nDimension components. This is a convenience function in case you want to apply the same variance in every dimension.
|
protected |
Returns a uniformly generated random configuration with nDimension components.
|
pure virtual |
|
protected |
|
protected |